REDUÇÃO DA ACIDEZ DO BIO-ÓLEO POR REAÇÕES DE ESTERIFICAÇÃO METÍLICA
Download (English)

Palavras-chave

upgrade
esterificação
neutralização
craqueamento térmico
triglicerídeos

Como Citar

WIENHAGE, G. H.; RAMOS, E. S.; CHIARELLO, L. M.; BOTTON, V.; WIGGERS, V. R. REDUÇÃO DA ACIDEZ DO BIO-ÓLEO POR REAÇÕES DE ESTERIFICAÇÃO METÍLICA. Revista Angolana de Minerais, Petróleo e Gás, v. 2, n. 2, p. 21-27, 19 abr. 2021.

Resumo

Uma alternativa aos combustíveis fósseis é o uso de biomassa triglicérica para conversão em biocombustível pelo processo de craqueamento térmico, também conhecido como pirólise. A fase líquida, chamada de bio-óleo, tem propriedades físico-químicas similares aos combustíveis derivados do petróleo. Uma das características indesejáveis ​​do bio-óleo é o alto índice de acidez, devido à presença de ácidos carboxílicos de cadeia curta em sua composição. Este recurso torna tanto o refinamento quanto o uso, inviáveis. O objetivo deste trabalho foi realizar reações de esterificação utilizando bio-óleo, produzido a partir da pirólise do óleo de soja já caracterizado, a fim de reduzir seu índice de acidez. Além disso, o bio-óleo esterificado foi submetido a diferentes experimentos de lavagem para diminuir ainda mais a acidez final. Para a reação de esterificação, 25 g de bio-óleo foram usados ​​a uma temperatura de 64 °C, usando de 0,8 a 2,2% de ácido sulfúrico e 0,5 a 99,5% de razão mássica de álcool metílico e bio-óleo. A maior redução do índice de acidez após 20 min foi de 81,2%, onde a acidez do bio-óleo esterificado reduziu de 129 para 32,4 mg KOH g-1. A reação de esterificação seguida de lavagem e neutralização pode diminuir ainda mais esses valores e, o índice de acidez pode zerar.

https://doi.org/10.47444/amogj.v2i2.4
Download (English)

Referências

Araújo, A.M. de M., Lima, R. de O., Gondim, A.D., Diniz, J., Souza, L. Di, Araujo, A.S. de, 2017. Thermal and catalytic pyrolysis of sunflower oil using AlMCM-41. Renew. Energy 101, 900–906. https://doi.org/10.1016/j.renene.2016.09.058

Beims, R.F., Bertoli, S.L., Botton, V., Ender, L., Simionatto, E.L., Meier, H.F., Wiggers, V.R., 2017. Co-Processing of Thermal Cracking Bio-Oil At Petroleum Refineries. Brazilian J. Pet. Gas 11, 99–113. https://doi.org/10.5419/bjpg2017-0009

Beims, R.F., Botton, V., Ender, L., Scharf, D.R., Simionatto, E.L., Meier, H.F., Wiggers, V.R., 2018. Effect of degree of triglyceride unsaturation on aromatics content in bio-oil. Fuel 217, 175–184. https://doi.org/10.1016/j.fuel.2017.12.109

Beims, R.F., Simonato, C.L., Wiggers, V.R., 2019. Technology readiness level assessment of pyrolysis of trygliceride biomass to fuels and chemicals. Renew. Sustain. Energy Rev. 112, 521–529. https://doi.org/10.1016/j.rser.2019.06.017

Botton, V., Riva, D., Simionatto, E.L., Wiggers, V.R., Ender, L., Meier, H.F., Barros, A.A.C., 2012. Craqueamento termo-catalítico da mistura óleo de fritura usado - Lodo de estamparia têxtil para a produção de óleo com baixo índice de acidez. Quim. Nova 35, 677–682. https://doi.org/10.1590/S0100-40422012000400004

Botton, V., Torres De Souza, R., Wiggers, V.R., Scharf, D.R., Simionatto, E.L., Ender, L., Meier, H.F., 2016. Thermal cracking of methyl esters in castor oil and production of heptaldehyde and methyl undecenoate. J. Anal. Appl. Pyrolysis 121, 387–393. https://doi.org/10.1016/j.jaap.2016.09.002

Chang, J.-S., Cheng, J.-C., Ling, T.-R., Chern, J.-M., Wang, G.-B., Chou, T.-C., Kuo, C.-T., 2017. Low acid value bio-gasoline and bio-diesel made from waste cooking oils using a fast pyrolysis process. J. Taiwan Inst. Chem. Eng. 73, 1–11. https://doi.org/10.1016/J.JTICE.2016.04.014

Chiarello, L., Porto, T., Barros, A., Simionatto, E., Botton, V., Wiggers, V., 2020. Bosting an oil refinery into a biorefinery. Angolan Miner. Oil Gas J. 1, 1–5. https://doi.org/10.47444/amogj.v1i1.1

Fan, L., Ruan, R., Li, J., Ma, L., Wang, C., Zhou, W., 2020. Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite. Appl. Energy 263, 114629. https://doi.org/10.1016/j.apenergy.2020.114629

Gollakota, A.R.K., Reddy, M., Subramanyam, M.D., Kishore, N., 2016. A review on the upgradation techniques of pyrolysis oil. Renew. Sustain. Energy Rev. 58, 1543–1568. https://doi.org/10.1016/J.RSER.2015.12.180

Hassen-Trabelsi, A.B., Kraiem, T., Naoui, S., Belayouni, H., 2014. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char. Waste Manag. 34, 210–218. https://doi.org/10.1016/j.wasman.2013.09.019

Huber, G.W., Corma, A., 2007. Synergies between bio- and oil refineries for the production of fuels from biomass. Angew. Chemie - Int. Ed. 46, 7184–7201. https://doi.org/10.1002/anie.200604504

Iha, O.K., Alves, F.C.S.C., Suarez, P.A.Z., Silva, C.R.P., Meneghetti, M.R., Meneghetti, S.M.P., 2014. Potential application of Terminalia catappa L. and Carapa guianensis oils for biofuel production: Physical-chemical properties of neat vegetable oils, their methyl-esters and bio-oils (hydrocarbons). Ind. Crops Prod. 52, 95–98. https://doi.org/10.1016/j.indcrop.2013.10.001

Junming, X., Jianchun, J., Yunjuan, S., Yanju, L., 2008. Bio-oil upgrading by means of ethyl ester production in reactive distillation to remove water and to improve storage and fuel characteristics. Biomass and Bioenergy 32, 1056–1061. https://doi.org/10.1016/j.biombioe.2008.02.002

Kim, J.-H., Jung, J.-M., Cho, S.-H., Tsang, Y.F., Wang, C.-H., Lee, J., Kwon, E.E., 2019. Upgrading bio-heavy oil via esterification of fatty acids and glycerol. J. Clean. Prod. 217, 633–638. https://doi.org/10.1016/j.jclepro.2019.01.289

Kraiem, T., Hassen-Trabelsi, A. Ben, Naoui, S., Belayouni, H., Jeguirim, M., 2015. Characterization of the liquid products obtained from Tunisian waste fish fats using the pyrolysis process. Fuel Process. Technol. 138, 404–412. https://doi.org/10.1016/j.fuproc.2015.05.007

Kraiem, T., Hassen, A. Ben, Belayouni, H., Jeguirim, M., 2017. Production and characterization of bio-oil from the pyrolysis of waste frying oil. Environ. Sci. Pollut. Res. 24, 9951–9961. https://doi.org/10.1007/s11356-016-7704-z

Kumar, N., 2017. Oxidative stability of biodiesel: Causes, effects and prevention. Fuel 190, 328–350. https://doi.org/10.1016/j.fuel.2016.11.001

Li, L., Yan, B., Li, H., Yu, S., Ge, X., 2020. Decreasing the acid value of pyrolysis oil via esterification using ZrO2/SBA-15 as a solid acid catalyst. Renew. Energy 146, 643–650. https://doi.org/10.1016/j.renene.2019.07.015

Lima, D.G., Soares, V.C.D., Ribeiro, E.B., Carvalho, D.A., Cardoso, É.C.V., Rassi, F.C., Mundim, K.C., Rubim, J.C., Suarez, P.A.Z., 2004. Diesel-like fuel obtained by pyrolysis of vegetable oils. J. Anal. Appl. Pyrolysis 71, 987–996. https://doi.org/10.1016/j.jaap.2003.12.008

Makarfi Isa, Y., Ganda, E.T., 2018. Bio-oil as a potential source of petroleum range fuels. Renew. Sustain. Energy Rev. 81, 69–75. https://doi.org/10.1016/J.RSER.2017.07.036

Mancio, A.A., Costa, K.M.B. da, Ferreira, C.C., Santosa, M.C., Lhamas, D.E.L., Mota, S.A.P. da, Leão, R.A.C., Souza, R.O.M.A. de, Araújoa, M.E., L.E.P. Borges, Machado, N.T., 2016. Thermal catalytic cracking of crude palm oil at pilot scale: Effect of the percentage of Na2CO3 on the quality of biofuels. Ind. Crops Prod. 91, 32–43. https://doi.org/10.1016/j.indcrop.2012.08.019

Menshhein, G., Costa, V., Chiarello, L.M., Scharf, D.R., Simionato, E.L., Botton, V., Meier, H.F., Wiggers, V.R., Ender, L., 2019a. Concentration of renewable products of crude bio-oil from thermal cracking of the methyl esters in castor oil. Renew. Energy 142, 561–568. https://doi.org/10.1016/j.renene.2019.04.136

Menshhein, G., Costa, V., Chiarello, L.M., Scharf, D.R., Simionato, E.L., Botton, V., Meier, H.F., Wiggers, V.R., Ender, L., 2019b. Experimental data of the distillation of bio-oil from thermal cracking of methyl ester in castor oil. Data Br. 25, 104325. https://doi.org/10.1016/j.dib.2019.104325

Molefe, M., Nkazi, D., Mukaya, H.E., 2019. Method Selection for Biojet and Biogasoline Fuel Production from Castor Oil: A Review. Energy & Fuels 33, 5918–5932. https://doi.org/10.1021/acs.energyfuels.9b00384

Radlein, D.S.A.G., Piskorz, J.K., Majerski, P.A., 1996. Method of upgrading biomass pyrolysis liquids for use as fuels and as a source of chemicals by reaction with alcohols. CA21655858A1.

Ramos, E.S., Zimmermann, D., Beims, R.F., Chiarello, L.M., Botton, V., Simionatto, E.L., Wiggers, V.R., 2020. Evaluation of ethylic and methylic esterification reactions to reduce acidity of crude bio‐oil. Environ. Prog. Sustain. Energy 39, e13441. https://doi.org/10.1002/ep.13441

Ratton Coppos, A.R., Kahn, S., Borges, L.E.P., 2018. Biofuels production by thermal cracking of soap from brown grease. Ind. Crops Prod. 112, 561–568. https://doi.org/10.1016/j.indcrop.2017.12.010

Shitao, Y., Cao, X., Wu, S., Chen, Q., Li, L., Li, H., 2020. Effective pyrolysis of waste cooking oils into hydrocarbon rich biofuel on novel mesoporous catalyst with acid and alkali coexisting. Ind. Crops Prod. 150, 112362. https://doi.org/10.1016/j.indcrop.2020.112362

Silva, V.T., Sousa, L.A., 2013. Catalytic Upgrading of Fats and Vegetable Oils for the Production of Fuels, The Role of Catalysis for the Sustainable Production of Bio-Fuels and Bio-Chemicals. © 2013 Elsevier B.V. All rights reserved. https://doi.org/10.1016/B978-0-444-56330-9.00003-6

Stedile, T., Ender, L., Meier, H.F., Simionatto, E.L., Wiggers, V.R., 2015. Comparison between physical properties and chemical composition of bio-oils derived from lignocellulose and triglyceride sources. Renew. Sustain. Energy Rev. 50, 92–108. https://doi.org/10.1016/j.rser.2015.04.080

Suota, M.J., Simionatto, E.L., Scharf, D.R., Meier, H.F., Wiggers, V.R., 2019. Esterification, Distillation, and Chemical Characterization of Bio-Oil and Its Fractions. Energy & Fuels 33, 9886–9894. https://doi.org/10.1021/acs.energyfuels.9b01971

Trabelsi, A.B.H., Zaafouri, K., Baghdadi, W., Naoui, S., Ouerghi, A., 2018. Second generation biofuels production from waste cooking oil via pyrolysis process. Renew. Energy 126, 888–896. https://doi.org/10.1016/j.renene.2018.04.002

Wang, C., Hu, Y., Chen, Q., Lv, C., Jia, S., 2013. Bio-oil upgrading by reactive distillation using p-toluene sulfonic acid catalyst loaded on biomass activated carbon. Biomass and Bioenergy 56, 405–411. https://doi.org/10.1016/j.biombioe.2013.04.026

Wetroff, G., Thillay, L., Divachetf, G., Khaladji, J., 1957. Pyrolysis of Ricinoleates - PCT US2807633.

Wiggers, V.R., Beims, R.F., Ender, L., Simionatto, E.L., Meier, H.F., 2017. Renewable Hydrocarbons from Triglyceride’s Thermal Cracking, in: Jacob-Lopes, E., Zepka, L.Q. (Eds.), Frontiers in Bioenergy and Biofuels. InTech. https://doi.org/10.5772/65498

Wiggers, V.R., Meier, H.F., Wisniewski, A., Chivanga Barros, A.A., Wolf Maciel, M.R., 2009a. Biofuels from continuous fast pyrolysis of soybean oil: A pilot plant study. Bioresour. Technol. 100, 6570–6577. https://doi.org/10.1016/j.biortech.2009.07.059

Wiggers, V.R., Wisniewski, A., Madureira, L.A.S., Barros, A.A.C., Meier, H.F., 2009b. Biofuels from waste fish oil pyrolysis: Continuous production in a pilot plant. Fuel 88, 2135–2141. https://doi.org/10.1016/j.fuel.2009.02.006

Wiggers, V.R., Zonta, G.R., França, A.P., Scharf, D.R., Simionatto, E.L., Ender, L., Meier, H.F., 2013. Challenges associated with choosing operational conditions for triglyceride thermal cracking aiming to improve biofuel quality. Fuel 107, 601–608. https://doi.org/10.1016/j.fuel.2012.11.011

Wisniewski, A., Wiggers, V.R., Simionatto, E.L., Meier, H.F., Barros, A.A.C., Madureira, L.A.S., 2010. Biofuels from waste fish oil pyrolysis: Chemical composition. Fuel 89, 563–568. https://doi.org/10.1016/j.fuel.2009.07.017

Wisniewski Jr., A., Wosniak, L., Scharf, D.R., Wiggers, V.R., Meier, H.F., Simionatto, E.L., Wisniewski Jr, A., Wosniak, L., Scharf, D.R., Wiggers, V.R., Meier, H.F., Simionatto, E.L., 2015. Upgrade of Biofuels Obtained from Waste Fish Oil Pyrolysis by Reactive Distillation. J. Braz. Chem. Soc. 26, 224–232. https://doi.org/10.5935/0103-5053.20140251

Xiu, S., Shahbazi, A., 2012. Bio-oil production and upgrading research: A review. Renew. Sustain. Energy Rev. 16, 4406–4414. https://doi.org/10.1016/J.RSER.2012.04.028

Xu, J., Jiang, J., Sun, Y., Chen, J., 2010. Production of hydrocarbon fuels from pyrolysis of soybean oils using a basic catalyst. Bioresour. Technol. 101, 9803–9806. https://doi.org/10.1016/j.biortech.2010.06.147

Xu, J., Jiang, J., Zhang, T., Dai, W., 2013. Biofuel production from catalytic cracking of triglyceride materials followed by an esterification reaction in a scale-up reactor. Energy and Fuels 27, 255–261. https://doi.org/10.1021/ef3018173

Xu, J., Jiang, J., Zhao, J., 2016. Thermochemical conversion of triglycerides for production of drop-in liquid fuels. Renew. Sustain. Energy Rev. 58, 331–340. https://doi.org/10.1016/j.rser.2015.12.315

Xu, L., Cheng, J.-H., Liu, P., Wang, Q., Xu, Z.-X., Liu, Q., Shen, J.-Y., Wang, L.-J., 2019. Production of bio-fuel oil from pyrolysis of plant acidified oil. Renew. Energy 130, 910–919. https://doi.org/10.1016/j.renene.2018.07.012

Yu, S., Wu, S., Li, L., Ge, X., 2020. Upgrading bio-oil from waste cooking oil by esterification using SO42−/ZrO2 as catalyst. Fuel 276, 118019. https://doi.org/10.1016/j.fuel.2020.118019

Downloads

Não há dados estatísticos.