The Chemical Characterization of Frying Oil Biodiesel and Relation with the Oxidation Stability
Download

Keywords

Biodiesel, Frying oil, Oxidation stability, Short chain acids.

How to Cite

VALNICE MOTTA, V.; SIMIONATTO, E. L.; RIVA SCHARF, D.; WIGGERS, V. R.; CHIARELLO, L. M.; MEIER, H. F. The Chemical Characterization of Frying Oil Biodiesel and Relation with the Oxidation Stability . Angolan Mineral, Oil & Gas Journal, v. 3, n. 3, p. 26-34, 1 Sep. 2022.

Abstract

The production of biodiesel from renewable sources is an important energy alternative to petroleum diesel. Even as the use of frying oil for biodiesel production is an environmentally-friendly alternative. However, the oxidation stability is one of the properties that can affect the performance of a fuel. Thus, this work investigates the components responsible for this low oxidative stability. For this, biodiesels from soybean oil and frying oil were produced and analyzed according to methods determined by the Brazilian National Agency of Petroleum, Natural Gas and Biofuels (ANP). The results obtained were related to oxidation stability and show the influence of free fatty acids on the quality of frying oil biodiesel. When the sample presents short chain acids in the composition, as acetic and butyric acids, it can influence negatively the oxidation stability, reducing upon to 99.7%. In addition, it was observed that the caprylic, capric and lauric acids found in frying oil biodiesel contributed to the lower oxidation stability.

https://doi.org/10.47444/amogj.v3i3.3
Download

References

Akoh C., Min, D.B., 2008. Food Lipids: Chemistry, Nutrition and Biotechnology.
Alberici, R.M., de Souza, V., de Sá, G.F., Morelli, S.R., Eberlin, M.N., Daroda, R.J., 2012. Used Frying Oil: A Proper Feedstock for Biodiesel Production? Bioenergy Res. 5, 1002–1008. https://doi.org/10.1007/s12155-012-9216-0
Beker, S.A., da Silva, Y.P., Bücker, F., Cazarolli, J.C., de Quadros, P.D., Peralba, M. do C.R., Piatnicki, C.M.S., Bento, F.M., 2016. Effect of different concentrations of tert-butylhydroquinone (TBHQ) on microbial growth and chemical stability of soybean biodiesel during simulated storage. Fuel 184, 701–707. https://doi.org/10.1016/j.fuel.2016.07.067
Biodiesel Handling and Use Guidelines (Second Edition), 2006. . Golden, CO. https://doi.org/10.2172/877419
Bouaid, A., Martinez, M., Aracil, J., 2007. Long storage stability of biodiesel from vegetable and used frying oils. Fuel 86, 2596–2602. https://doi.org/10.1016/j.fuel.2007.02.014
Corsini, M.D.S., Jorge, N., Miguel, A.M.R.D.O., Vicente, E., 2008. Perfil de ácidos graxos e avaliação da alteração em óleos de fritura. Quim. Nova 31, 956–961. https://doi.org/10.1590/s0100-40422008000500003
Cremonez, P.A., Feroldi, M., de Jesus de Oliveira, C., Teleken, J.G., Meier, T.W., Dieter, J., Sampaio, S.C., Borsatto, D., 2016. Oxidative stability of biodiesel blends derived from different fatty materials. Ind. Crops Prod. 89, 135–140. https://doi.org/10.1016/j.indcrop.2016.05.004
Da Silva, T.A.R., Neto, W.B., 2013. Study of reduction the acidity from residual oil for biodiesel production using fractional factorial design. Rev. Virtual Quim. 5, 828–839. https://doi.org/10.5935/1984-6835.20130060
Damasceno, S.S., Santos, N.A., Santos, I.M.G., Souza, A.L., Souza, A.G., Queiroz, N., 2013. Caffeic and ferulic acids: An investigation of the effect of antioxidants on the stability of soybean biodiesel during storage. Fuel 107, 641–646. https://doi.org/10.1016/j.fuel.2012.11.045
De Sousa, L.S., De Moura, C.V.R., De Oliveira, J.E., De Moura, E.M., 2014. Use of natural antioxidants in soybean biodiesel. Fuel 134, 420–428. https://doi.org/10.1016/j.fuel.2014.06.007
De Souza Schneider, R.D.C., Dos Santos, E., Krise, D.J., Lipke, R.J., 2011. Produção de óleos e gorduras residuais no Município de Arroio do Tigre, Estado do Rio Grande do Sul, visando á produção de biodiesel. Acta Sci. - Technol. 33, 71–79. https://doi.org/10.4025/actascitechnol.v33i1.8823
Demirbas, A., 2008. Biodiesel: a realistic fuel alternative for diesel engines. Springer London, London. https://doi.org/10.1007/978-1-84628-995-8
Demirbas, A., 2007. Thermal degradation of fatty acids in biodiesel production by supercritical methanol. Energy Explor. Exploit. 25, 63–70. https://doi.org/10.1260/014459807781036421
Díaz, L., Borges, M.E., 2012. Low-quality vegetable oils as feedstock for biodiesel production using k-pumice as solid catalyst. Tolerance of water and free fatty acids contents. J. Agric. Food Chem. 60, 7928–7933. https://doi.org/10.1021/jf301886d
Domingos, A.K., Saad, E.B., Vechiatto, W.W.D., Wilhelm, H.M., Ramos, L.P., 2007. The influence of BHA, BHT and TBHQ on the oxidation stability of soybean oil ethyl esters (biodiesel). J. Braz. Chem. Soc. 18, 416–423. https://doi.org/10.1590/S0103-50532007000200026
Fernandes, D.M., Montes, R.H.O., Almeida, E.S., Nascimento, A.N., Oliveira, P. V., Richter, E.M., Muñoz, R.A.A., 2013. Storage stability and corrosive character of stabilised biodiesel exposed to carbon and galvanised steels. Fuel 107, 609–614. https://doi.org/10.1016/j.fuel.2012.11.010
Focke, W.W., Westhuizen, I. Van Der, Grobler, A.B.L., Nshoane, K.T., Reddy, J.K., Luyt, A.S., 2012. The effect of synthetic antioxidants on the oxidative stability of biodiesel. Fuel 94, 227–233. https://doi.org/10.1016/j.fuel.2011.11.061
Focke, W.W., Westhuizen, I. Van Der, Oosthuysen, X., 2016. Biodiesel oxidative stability from Rancimat data. Thermochim. Acta 633, 116–121. https://doi.org/10.1016/j.tca.2016.03.023
Fu, J., Turn, S.Q., Takushi, B.M., Kawamata, C.L., 2016. Storage and oxidation stabilities of biodiesel derived from waste cooking oil. Fuel 167, 89–97. https://doi.org/10.1016/j.fuel.2015.11.041
Ghayal, D., Pandit, A.B., Rathod, V.K., 2013. Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil. Ultrason. Sonochem. 20, 322–328. https://doi.org/10.1016/j.ultsonch.2012.07.009
Giakoumis, E.G., 2013. A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation. Renew. Energy 50, 858–878. https://doi.org/10.1016/j.renene.2012.07.040
Jain, S., Sharma, M.P., 2010. Review of different test methods for the evaluation of stability of biodiesel. Renew. Sustain. Energy Rev. 14, 1937–1947. https://doi.org/10.1016/j.rser.2010.04.011
Kleinberg, M.N., Rios, M.A.S., Buarque, H.L.B., Parente, M.M.V., Cavalcante, C.L., Luna, F.M.T., 2019. Influence of Synthetic and Natural Antioxidants on the Oxidation Stability of Beef Tallow Before Biodiesel Production. Waste and Biomass Valorization 10, 797–803. https://doi.org/10.1007/s12649-017-0120-x
Knothe, G.., Gerpen, J.V.., Krahl, J., 2006. The biodiesel handbook.
Martins, G.I., Secco, D., Rosa, H.A., Bariccatti, R.A., Dolci, B.D., Melegari De Souza, S.N., Santos, R.F., Benetoli Da Silva, T.R., Gurgacz, F., 2015. Physical and chemical properties of fish oil biodiesel produced in Brazil. Renew. Sustain. Energy Rev. 42, 154–157. https://doi.org/10.1016/j.rser.2014.10.024
Montero, G., Stoytcheva, M., 2011. Biodiesel – Feedstocks and processing technologies, Intechopen: Rijeka.
Nersesian, R.L., 2010. Energy for the 21st Century: A Comprehensive Guide to Conventional and Alternative Souces: A Comprehensive Guide to Conventional and Alternative Source.
Neumann, A., Jebens, T., Wierzbicki, V., 2008. A method for determining oxidation stability of petrodiesel, biodiesel, and blended fuels. Am. Lab. 40, 22–26.
Pantoja, S.S., Da Conceição, L.R. V, Da Costa, C.E.F., Zamian, J.R., Da Rocha Filho, G.N., 2013. Oxidative stability of biodiesels produced from vegetable oils having different degrees of unsaturation. Energy Convers. Manag. 74, 293–298. https://doi.org/10.1016/j.enconman.2013.05.025
Pullen, J., Saeed, K., 2012. An overview of biodiesel oxidation stability. Renew. Sustain. Energy Rev. 16, 5924–5950. https://doi.org/10.1016/j.rser.2012.06.024
Roveda, A.C., Comin, M., Caires, A.R.L., Ferreira, V.S., Trindade, M.A.G., 2016. Thermal stability enhancement of biodiesel induced by a synergistic effect between conventional antioxidants and an alternative additive. Energy 109, 260–265. https://doi.org/10.1016/j.energy.2016.04.111
Sagiroglu, A., Selen, I., Ozcan, M., Paluzar, H., Toprakkiran, N., 2011. Comparison of biodiesel productivities of different vegetable oils by acidic catalysis. Chem. Ind. Chem. Eng. Q. 17, 53–58. https://doi.org/10.2298/CICEQ100114054S
Saluja, R.K., Kumar, V., Sham, R., 2016. Stability of biodiesel – A review. Renew. Sustain. Energy Rev. 62, 866–881. https://doi.org/10.1016/j.rser.2016.05.001
Serqueira, D.S., Fernandes, D.M., Cunha, R.R., Squissato, A.L., Santos, D.Q., Richter, E.M., Munoz, R.A.A., 2014. Influence of blending soybean, sunflower, colza, corn, cottonseed, and residual cooking oil methyl biodiesels on the oxidation stability. Fuel 118, 16–20. https://doi.org/10.1016/j.fuel.2013.10.028
Serrano, M., Martínez, M., Aracil, J., 2013. Long term storage stability of biodiesel: Influence of feedstock, commercial additives and purification step. Fuel Process. Technol. 116, 135–141. https://doi.org/10.1016/j.fuproc.2013.05.011
Serrano, M., Oliveros, R., Sánchez, M., Moraschini, A., Martínez, M., Aracil, J., 2014. Influence of blending vegetable oil methyl esters on biodiesel fuel properties: Oxidative stability and cold flow properties. Energy 65, 109–115. https://doi.org/10.1016/j.energy.2013.11.072
Silva, A.A.L., Dias Santos, A.G., Di Souza, L., Da Silva Caldeira, V.P., Luz Júnior, G.E., Araújo, A.S., 2015. Síntese e Caracterização de Biodiesel de Sebo Bovino e de sua Mistura B10. Orbital - Electron. J. Chem. 7. https://doi.org/10.17807/orbital.v7i1.680
Sorate, K.A., Bhale, P. V., 2015. Biodiesel properties and automotive system compatibility issues. Renew. Sustain. Energy Rev. 41, 777–798. https://doi.org/10.1016/j.rser.2014.08.079
Wang, Z., Liao, T., Zhou, Z., Wang, Y., Diao, Y., Strappe, P., Prenzler, P., Ayton, J., Blanchard, C., 2016. Construction of local gene network for revealing different liver function of rats fed deep-fried oil with or without resistant starch. Toxicol. Lett. 258, 168–174. https://doi.org/10.1016/j.toxlet.2016.06.2101
Y.-S. Hung, Chen, Y.-H., N.-C. Shang, C.-H. Chang, 2010. Comparison of biodiesels produced from waste and virgin vegetables oils. Sustain. Environ. Res. 20, 417–422.
Yaakob, Z., Narayanan, B.N., Padikkaparambil, S., Unni K., S., Akbar P., M., 2014. A review on the oxidation stability of biodiesel. Renew. Sustain. Energy Rev. 35, 136–153. https://doi.org/10.1016/j.rser.2014.03.055
Zhou, J., Xiong, Y., Xu, S., 2016. Evaluation of the oxidation stability of biodiesel stabilized with antioxidants using the PetroOXY method. Fuel 184, 808–814. https://doi.org/10.1016/j.fuel.2016.07.080
Zuleta, E.C., Baena, L., Rios, L.A., Calderón, J.A., 2012a. The oxidative stability of biodiesel and its impact on the deterioration of metallic and polymeric materials: A review. J. Braz. Chem. Soc. 23, 2159–2175. https://doi.org/10.1590/S0103-50532012001200004
Zuleta, E.C., Rios, L.A., Benjumea, P.N., 2012b. Oxidative stability and cold flow behavior of palm, sacha-inchi, jatropha and castor oil biodiesel blends. Fuel Process. Technol. 102, 96–101. https://doi.org/10.1016/j.fuproc.2012.04.018

Downloads

Download data is not yet available.