Density and viscosity measurements for diesel-decanol-oxymethylene ether blends
Download Full

Keywords

advanced fuel
decanol
oxymethylene ether
density
viscosity
blending equation

How to Cite

VIRT, M.; HORVÁTH, L.; ZÖLDY, M. Density and viscosity measurements for diesel-decanol-oxymethylene ether blends. Angolan Mineral, Oil & Gas Journal, v. 4, n. 4, p. 1-5, 8 Apr. 2023.

Abstract

Advanced fuels can be used as an alternative for conventional fossil fuels. Out of many promising candidates, alcohols and ethers are well-studied substances for application in internal combustion engines. This study investigates the possibility of decanol and oxymethylene ether usage in compression ignition engines. To use diesel-decanol-oxymethylene ether blends in diesel engines, the properties of the mixtures need to be close to diesel fuels. For this, the blending ratios need to be chosen carefully to ensure good ignitability, fuel delivery and atomization of the fuel. This study focuses on the density and viscosity blending calculations and compares the predicted results to the actual values. The used formulas are found to be the most accurate for binary blends, and the accuracy gets worse whenever there is a big difference in the properties of the components.

Download Full

References

Cipriano, E. ., Silva Major, T. C. F. da ., Pessela, B. ., & Chivanga Barros, A. A. (2022). Production of Anhydrous Ethyl Alcohol from the Hydrolysis and Alcoholic Fermentation of Corn Starch. Cognitive Sustainability, 1(4). https://doi.org/10.55343/cogsust.36

Csemány, D.; DarAli, O.; Rizvi, S. A. H.; Józsa, V., Comparison of volatility characteristics and temperature-dependent density, surface tension, and kinematic viscosity of n-butanol-diesel and ABE-diesel fuel blends, Fuel,Volume 312, doi.org/10.1016/j.fuel.2021.122909 (2022)

Dieterich, V.; Buttler, A.; Hanel, A.; Spliethof, H.; Fendt, S., Power-to-liquid via synthesis of methanol, DME, Energy and Enviromental Science, Issue 10, doi.org/10.1039/D0EE01187H (2020)

El-Seesy, A. I.; Xuan, T.; He, Z.; Hassan, H., Enhancement the combustion aspects of a CI engine working with Jatropha biodiesel/decanol/propanol ternary combinations, Energy Conversion and Management, Volume 226, doi.org/10.1016/j.enconman.2020.113524 (2020)

Hamilton-Kemp, T.; Newman, M.; Collins, R.; Elgaali, H.; Yu, K.; Archbold, D., Production of the long-chain alcohols octanol, decanol, and dodecanol by Escherichia coli, Current Microbiology, doi.org/10.1007/s00284-005-4469-x (2005)

Hidegh, GY. T.; Csemány, D.; DarAli, O.; Rizvi, S. A. H; Ng, J.; Chong, C. T.; Józsa, V., Comparison of thermophysical properties and combustion characteristics of various biodiesels in a non-MILD ultra-low emission swirl burner, Fuel, Volume 334, Part 1, doi.org/10.1016/j.fuel.2022.126583 (2023)

Mahbub, N.; Oyedun, A. O.; Kumar, A.; Oestreich, D.; Arnold, U.; Sauer, J. (2017). A life cycle assessment of oxymethylene ether synthesis from biomass-derived syngas as a diesel additive. Journal of cleaner production, 165, 1249–1262. doi:10.1016/j.jclepro.2017.07.178

Nanthagopal, K.; Ashok, B.; Saravanan, B.; Ramesh Pathy, M.; Sahil, G.; Ramesh, A.; Nabi, M. N.; Rasul M. G., Study on decanol and Calophyllum Inophyllum biodiesel as ternary blends, Fuel, Volume 239, doi.org/10.1016/j.fuel.2018.11.037. (2019)

Nour, M.; Nada, S.; Li, X., Experimental study on the combustion performance of a stationary CIDI engine fueled with 1-heptanol-diesel mixtures, Fuel, Volume 312, doi.org/10.1016/j.fuel.2021.122902 (2022)

Noweck, K.; Grafahrend, W., Fatty Alcohols, Ullmann's Encyclopedia of Industrial Chemistry doi.org/10.1002/14356007.a10_277.pub2 (2006)

Nyerges, Á. Zöldy, M.: Verification and comparison of nine exhaust gas recirculation mass flow rate estimation methods. Sensors, 20(24), 7291. (2020).

Ritchie, H., Cars, planes, trains: where do CO2 emissions from transport come from?, Our World in Data, ourworldindata.org/co2-emissions-from-transport (2020)

Rutter, C. D., Rao, C. V., Production of 1-decanol by metabolically engineered Yarrowia lipolytica, Metabolic Engineering, Volume 38, doi.org/10.1016/j.ymben.2016.07.011 (2016).

Saupe, C.; Atzler, F., Potentials of oxymethylene-dimethyl-ether in diesel engine combustion. Automot. Engine Technol. 7, 331–342, doi.org/10.1007/s41104-022-00117-5 (2022)

Virt, M.; Arnold, U., Effects of Oxymethylene Ether in a Commercial Diesel Engine, Cognitive Sustainability, September 2022, cogsust.com/index.php/real/article/view/20 (2022)

Yanowitz, J.; Murphy, M.; Ratcliff, M.; McCormick, R.; Taylor, J., Compendium of Experimental Cetane Numbers, National Renewable Energy Laboratory, www.nrel.gov/docs/fy17osti/67585.pdf (2017)

Zhmud, B., Viscosity blending equations, The European lubricants industry magazine, 22-27. (2014)

Zöldy, M., Zsombók, I.: Modelling fuel consumption and refuelling of autonomous vehicles. In MATEC Web of Conferences (Vol. 235, p. 00037). EDP Sciences. (2018).

Zöldy, M. (2007). Bioethanol-biodiesel-diesel oil blends effect on cetane number and viscosity. Bartz, WJ (szerk.) 6th International Colloquim: Fuels, 235.

Downloads

Download data is not yet available.