Boosting an Oil Refinery into a Biorefinery
ISSN: 2708-2989

Supplementary Files

Download

Keywords

Biofuel
bioeconomy
corefining
green chemistry

How to Cite

CHIARELLO, L.; PORTO, T.; BARROS, A.; SIMIONATTO, E.; BOTTON, V.; WIGGERS, V. Boosting an Oil Refinery into a Biorefinery. Angolan Mineral, Oil & Gas Journal, v. 1, n. 1, p. 1-5, 6 May 2020.

Abstract

The use of biofuels is increasingly important in order to mitigate the consumption of petroleum and increase the energy use of renewable sources. The estimative is that in 2040 the demand for oil will intensificate by 26% and part of it will have to be supplied by renewable energy. Biofuels offer a reliable alternative and among the process associated to biofuels production, thermal cracking results on a liquid product (bio-oil) with similar characteristics to the fossil fuels, particularly when performed with triglyceride sources (TG). In this sense, the main goal of this work is to propose an alternative sequence of chemical processes aiming to boost an oil refinery chain into a green refinery by producing, co-processing and improving bio-oil characteristics obtained from triglyceride source. Some bio-oil characteristics like density, acidity (AI), iodine index (II), oxygen content (OC), carbon number distribution and chemical compositions are presented. The properties of bio-oil obtained from the thermal cracking of triglycerides might be compared to petroleum and its derivate. Although the characteristics are similar between them, the bio-oil requires upgrading to reduce its high acid index, until achieve levels acceptable for its processing at a refinery. The content of olefins and oxygen might be reduced through hydrotreatment process. The hydrotreatment can promote the saturation of the double bonds and remove the oxygen atoms. The hydrotreatment unit is present in most of the refineries and further investigations are required to evaluate the hydrogen consumption. The proposal of this work is divided in four steps: the first is to produce bio-oil through triglyceride’s thermal cracking in a continuous and steady state regime; the second process is to promote the esterification of bio-oil to reduce its acid index; the third stage is co-processing bio-oil in a distillation unit being fractionated into desired fractions; the fourth step involves hydrotreatment to reduce both iodine index and oxygen content. Thus, the co-processing of bio-oil appears to be a promising approach to increasing the biofuels content in an oil refinery, to reduce sulfur and to maintain the quality parameters of commercial fuels.

https://doi.org/10.47444/amogj.v1i1.1

References

Ministério de Minas e Energia, Resenha Energética Brasileira – Exercício de 2018. ( 2019).

ANP - Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, Brazil. (2019).

Botton V., Riva D.R., Simionatto E.L., Wiggers V.R., Ender L., Meier H.F., Barros A.A.C.; Craqueamento termo-catalítico da mistura óleo de fritura usado-lodo de estamparia têxtil para a produção de óleo com baixo índice de acidez. Quim. Nova, Vol. 35, 4, 677–682. (2012)

Beims R.F., Botton V., Ender L., Scharf D.R., Simionatto E.L., Meier H.F., Wiggers V.R; Effect of degree of triglyceride unsaturation on aromatics content in bio-oil. Fuel, Vol.217, 175–184. (2018).

Meeprasertsagool P., Watthanaphanit A., Ueno T., Saito N., Reubroycharoen P.; New insights into vegetable oil pyrolysis by cold plasma technique, Energy Procedia, Vol. 138, 1153–1158. (2017).

Ma W., Liu B., Zhang R., Gu T., Ji X., Zhong L., Chen, G., Ma, L., Cheng Z., Li, X.; Co-upgrading of raw bio-oil with kitchen waste oil through fluid catalytic cracking (FCC), Appl. Energy, Vol. 217, 233–240. (2018).

Suota M.J., Simionatto E.L., Scharf D.R., Motta V., Moser D., Oliveira L.B., Pedroso, L.R.M., Wisniewski Jr, A., Wiggers, V.R., Botton, V., Meier, H.F.; Avaliação de características de biodieseis de fontes alternativas submetidos a condições de armazenagem diferenciada, Quim. Nova, Vol. 41, 6, 648–655. (2018).

Botton V., Piovan L., Meier H.F., Mitchell D.A., Cordova J., Krieger N.; Optimization of biodiesel synthesis by esterification using a fermented solid produced by Rhizopus microsporus on sugarcane bagasse, Bioprocess Biosyst Eng. Vol. 41, 4, 573–583. (2018).

Fore S.R., Lazarus W., Porter P., Jordan N.; Economics of small-scale on-farm use of canola and soybean for biodiesel and straight vegetable oil biofuels. Biomass Bioenergy, Vol. 35, 1, 193–202. (2011).

Medeiros E.F., Vieira B.M., Pereira C.M.P., Nadaleti W.C., Quadro M.S., Andreazza R.; Production of biodiesel using oil obtained from fish processing residue by conventional methods assisted by ultrasonic waves: Heating and stirring. Renew. Energy, 143, 1357–1365. (2019).

Ferrero G.O., Rojas H.J., Argaraña C.E., Eimer G.A.; Towards sustainable biofuel production: Design of a new biocatalyst to biodiesel synthesis from waste oil and commercial ethanol. J. Clean Prod., 139, 495–503. (2016).

Pitarelo A.P., Fonseca C.S., Chiarello L.M., Gírio F.M., Ramos L.P.; Ethanol production from sugarcane bagasse using phosphoric acid-catalyzed steam explosion. J. Braz. Chem. Soc., 27, 10, 1889–1898. (2016).

Chiarello L.M., Ramos C.E.A., Neves P.V., Ramos L.P.; Production of cellulosic ethanol from steam-exploded Eucalyptus urograndis and sugarcane bagasse at high total solids and low enzyme loadings. Sustain. Chem. Process., 4, 1–9. (2016).

Valderrama C., Quintero V., Kafarov V.; Energy and water optimization of an integrated bioethanol production process from molasses and sugarcane bagasse: A Colombian case. Fuel, 260, 116314. (2020).

Liu C.G., Xiao Y., Xia X-X., Zhao X.Q., Peng L., Srinophakun P., Bai, F-W.; Cellulosic ethanol production: Progress, challenges and strategies for solutions. Biotechnol. Adv., 37, 3, 491–504. (2019).

Auersvald M., Shumeiko B., Vrtiška D., Straka P., Staš M., Šimáček P., Blažek J., Kubička D.; Hydrotreatment of straw bio-oil from ablative fast pyrolysis to produce suitable refinery intermediates. Fuel, , 238, 98–110. (2019).

Šimáček P., Kubička D., Kubičková I., Homola F., Pospíšil M., Chudoba J.; Premium quality renewable diesel fuel by hydroprocessing of sunflower oil. Fuel, 90, 7, 2473–2479. (2011).

Veriansyah B., Han J.Y., Kim S.K., Hong S.A., Kim Y.J., Lim J.S., Shu Y-W., Oh S-G., Kim J.; Production of renewable diesel by hydroprocessing of soybean oil: Effect of catalysts. Fuel, 94, 578–585. (2012).

Stedile T., Ender L., Meier H.F., Simionatto E.L., Wiggers V.R.; Comparison between physical properties and chemical composition of bio-oils derived from lignocellulose and triglyceride sources. Renew. Sustain. Energy Rev., 50, 92–108. (2015).

Zámostný P., Bělohlav Z., Šmidrkal J.; Production of olefins via steam cracking of vegetable oils. Resour. Conserv. Recycl., 59, 47–51. (2012).

Menshhein G., Costa V., Chiarello L.M., Scharf D.R., Simionato E.L., Botton V., Meier, H.F., Wiggers, V.R., Ender, L.; Experimental data of the distillation of bio-oil from thermal cracking of methyl ester in castor oil. Data Br., 25, 104325. (2019).

Krutof A., Hawboldt K.; Blends of pyrolysis oil, petroleum, and other bio-based fuels: A review. Renew. Sustain. Energy. Rev., 59, 406–419. (2016).

Kraiem T., Hassen A.B., Belayouni H., Jeguirim M.; Production and characterization of bio-oil from the pyrolysis of waste frying oil. Environ. Sci. Pollut. Res., 24, 11, 9951–9961. (2017).

Wisniewski Jr. A., Wosniak L., Scharf D.R., Wiggers V.R., Meier H.F., Simionatto E.L.; Upgrade of Biofuels Obtained from Waste Fish Oil Pyrolysis by Reactive Distillation. J. Braz. Chem. Soc., 26, 2, 224–232. (2015).

Gollakota A.R.K., Reddy M., Subramanyam M.D., Kishore N.; A review on the upgradation techniques of pyrolysis oil. Renew Sustain Energy Rev 2016, 58, 1543–1568. (2016).

Chang J-S., Cheng J-C., Ling T-R., Chern J-M., Wang G-B., Chou T-C., Kuo C-T.; Low acid value bio-gasoline and bio-diesel made from waste cooking oils using a fast pyrolysis process. J. Taiwan Inst. Chem. Eng., 73, 1–11. (2017).

FAOSTAT. Accessed 5th Aug 2019. http://www.fao.org/faostat/en/#compare. (2019).

Xu J., Jiang J., Sun Y., Chen J.; Production of hydrocarbon fuels from pyrolysis of soybean oils using a basic catalyst. Bioresour. Technol., 101, 4, 9803–9806. (2010).

Xu J., Jiang J., Zhang T., Dai W.; Biofuel production from catalytic cracking of triglyceride materials followed by an esterification reaction in a scale-up reactor. Energy and Fuels, 27, 1, 255–261. (2013).

Molefe M., Nkazi D., Mukaya H.E.; Method Selection for Biojet and Biogasoline Fuel Production from Castor Oil: A Review. Energy & Fuels, 33, 7, 5918–5932. (2019).

Botton V., Torres de Souza R., Wiggers V.R., Scharf D.R., Simionatto E.L., Ender L., Meier, H.F.; Thermal cracking of methyl esters in castor oil and production of heptaldehyde and methyl undecenoate. J. Anal. Appl. Pyrolysis, 121, 387–393. (2016).

Menshhein G., Costa V., Chiarello L.M., Scharf D.R., Simionato E.L., Botton V., Meier, H.F., Wiggers, V.R., Ender, L.; Concentration of renewable products of crude bio-oil from thermal cracking of the methyl esters in castor oil. Renew. Energy, 142, 561–568. (2019).

Yigezu Z.D., Muthukumar K.; Biofuel production by catalytic cracking of sunflower oil using vanadium pentoxide. J. Anal. Appl. Pyrolysis, 112, 341–347. (2015).

Seifi H., Sadrameli S.M.; Bound cleavage at carboxyl group-glycerol backbone position in thermal cracking of the triglycerides in sunflower oil. J. Anal. Appl. Pyrolysis, 121, 1–10. (2016).

Idem R.O., Katikaneni S.P.R., Bakhshi N.N.; Thermal cracking of canola oil: Reaction products in the presence and absence of steam. Energy Fuels, 10, 6, 1150–1162. (1996).

Fimberger J., Swoboda M., Reichhold A.; Thermal cracking of canola oil in a continuously operating pilot plant. Powder Technol., 316, 535–541. (2017).

Wiggers V.R., Meier H.F., Wisniewski A., Chivanga A.A.B., Wolf Maciel M.R.; Biofuels from continuous fast pyrolysis of soybean oil: A pilot plant study. Bioresour. Technol., 100, 24, 6570–6577. (2009).

Hassen-Trabelsi A.B., Kraiem T., Naoui S., Belayouni H.; Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char. Waste Manag., 34, 1, 210–218. (2014).

Khammasan T., Tippayawong N.; Light liquid fuel from catalytic cracking of beef tallow with ZSM-5. Int. J. Renew. Energy Res. 2018, 8, 1, 407–413. (2018).

Adebanjo A.O., Dalai A.K., Bakhshi N.N.; Production of diesel-like fuel and other value-added chemicals from pyrolysis of animal fat. Energy Fuels, 19, 4, 1735–1741. (2005).

Trabelsi A.B.H., Zaafouri K., Baghdadi W., Naoui S., Ouerghi A.; Second generation biofuels production from waste cooking oil via pyrolysis process. Renew. Energy, 126, 888–896. (2018).

Mohamed M.A., Hashim A.M., Abu-Elyazeed O.S.M., Elsayed H.A.; Biofuel Production from Used Cooking Oil Using Pyrolysis Process. Int. J. Res. Appl. Sci. Eng. Technol., 2971–2976. (2017).

Santana K.V.R., Apolônio F.C.S.O., Wisniewski Jr. A.; Valorization of cattle manure by thermoconversion process in a rotary kiln reactor to produce environmentally friendly products. Bioenergy Res. (2019).

Beims R.F., Botton V., Ender L., Scharf D.R., Simionatto E.L., Meier H.F., Wiggers, V.R.; Experimental data of thermal cracking of soybean oil and blends with hydrogenated fat. Data Br, 17, 442–451. (2018).

Araújo A.M.M., Lima R.O., Gondim A.D., Diniz J., Souza L.D., Araujo A.S.; Thermal and catalytic pyrolysis of sun fl ower oil using AlMCM-41. Renew. Energy, 101, 900–906. (2017).

Frainer B.L.M., Wiggers, V.R., Sharf D.R., Meier H.F., Ender L., Simionatto E.L.; Thermal Cracking of Frying Oil: A Proposal for a Kinetic Mechanism Based on Groups of Compounds. Am Inst Chem Eng - Annu Meet 2014. (2014).

Du S., Valla J.A., Bollas G.M.; Characteristics and origin of char and coke from fast and slow, catalytic and thermal pyrolysis of biomass and relevant model compounds. Green Chem, 15, 3214–3229. (2013).

ANP - Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, Brazil. (2014).

Peláez Samaniego M.R.; Uso de biocombustível da pirólise rápida da palha de cana em um motor de ciclo Otto. Dissertação Mestrado em Engenharia Mecânica – UNICAMP. (2007).

Beims R.F., Bertoli S.L., Botton V., Ender L., Simionatto E.L., Meier H.F., Wiggers V.R.; Co-Processing of Thermal Cracking Bio-Oil At Petroleum Refineries. Brazilian J. Pet. Gas, 11, 2, 99–113. (2017).

Beims R.F., Simonato C.L., Wiggers V.R.; Technology readiness level assessment of pyrolysis of trygliceride biomass to fuels and chemicals. Renew. Sustain. Energy Rev., 112, 521–529. (2019).

Ramos E.S., Zimmermann D., Beims R.F., Chiarello L.M., Botton V., Simionatto E.L., Wiggers V.R.; Evaluation of ethylic and methylic esterification reactions to reduce acidity of crude bio-oil. Environ. Prog. Sustain. Energy, In Press. doi:10.1002/ep.13441. (2020).

Xu J., Xiao G., Zhou Y., Jiang J.; Production of Biofuels from High-Acid-Value Waste Oils. Energy Fuels, 25, 10, 4638–4642. (2011).

Li L., Yan B., Li H., Yu S., Ge X.; Decreasing the acid value of pyrolysis oil via esterification using ZrO2/SBA-15 as a solid acid catalyst. Renew. Energy, 146, 643–650. (2020).

Suota M.J., Simionatto E.L., Scharf D.R., Meier H.F., Wiggers V.R.; Esterification, Distillation and Chemical Characterization of Bio-oil and Fractions. Energy Fuels, 33, 10, 9886–9894. (2019).

Venderbosch R., Heeres H.J.; Pyrolysis Oil Stabilisation by Catalytic Hydrotreatment. Biofuel’s Eng. Process Technol. (2011)..

Han Y., Gholizadeh M., Tran C., Kaliaguine C., Li C-Z., Olarte M., Garcia-Perez M.; Hydrotreatment of pyrolysis bio-oil: A review. Fuel Process. Technol., 195, 106140. (2019).

Wang H., Lin H., Feng P., Han X., Zheng Y.; Integration of catalytic cracking and hydrotreating technology for triglyceride deoxygenation. Catal. Today , 291, 172–179. (2017).

del Río J.I., Cardeño F., Pérez W., Peña J.D., Rios L.A.; Catalytic hydrotreating of jatropha oil into non-isomerized renewable diesel: Effect of catalyst type and process conditions. Chem. Eng. J., 352, 232–240. (2018).

European Commission Innovating for Sustainable Growth: a Bioeconomy for Europe. COM(2012) 60 Final. Eur Comm. (2012).

European Commission COM/2014/015 Final, a Policy Framework for Climate and Energy in the Period from 2020 to 2030. Eur Comm. (2014).

Ingrao C., Bacenetti J., Bezama A., Blok V., Goglio P., Koukios E.G., Lindner M., Nemecek T., Siracusa V., Zabaniotou A., Huising D.; The potential roles of bio-economy in the transition to equitable, sustainable, post fossil-carbon societies: Findings from this virtual special issue. J. Clean. Prod., 204, 471–488. (2018).

Finnish Bioeconomy Strategy Sustainable Growth from Bioeconomy, the Finnish Bioeconomy Strategy. Finnish Bioeconomy Strateg. (2014).

Downloads

Download data is not yet available.